
Multiplayer Mission Making For
Arma 3

Contents

Locality – The Most Important Thing..1
Locality and Variables..2
Locality and Objects...3
Common Pitfalls with Global Effect commands..4
Common Pitfalls with Local Effect commands..5
Locality of Triggers..6
Practical Tips and Tricks..6
Briefings And Tasks..7
Working With Triggers...7
Using BIS_fnc_MP..8
Ending A Mission...8
A FSM Crash Course..8
What is a FSM..8
FSM Execution...9
Convoy Ambush Example..10
Conclusion..20
Copyright, Legal Notice and Disclaimer..20

In recent weeks and months I have come across a couple of missions while playing with our squad
that were either not functioning correctly or were downright broken. A lot of the issues can be
explained by the simple fact that we play on a dedicated server as opposed to hosted games. In this
document I will try to outline my experience with mission making and how to make solid, working
missions that are compatible to both single- and multiplayer, as well as working on hosted and
dedicated environments.

My main focus is no-respawn, hardcore coop, and that is what I will be focusing on. A lot of the
multiplayer concepts in Arma 3 are, however, applicable to all types of missions. However, large-
scale PvP scenarios will have other performance and optimization issues than low- to mid-scale
coop missions. My experience is with the latter, specifically, missions with up to 20 or so players
against AI.

This is not intended to be an all-out scripting guide. A certain proficiency with Arma 3 Scripting in
general is assumed for this. We'll only concentrate on the multiplayer parts, and there mainly on the
pitfalls people might encounter.

Locality – The Most Important Thing
One of the fundamental mission maker tools is a knowledge of locality. In Arma 3, we do not have a
strict client-server architecture. Instead, all clients as well as the server itself run code, both
mission-specific user code as well as engine-internal AI code. The concept of Locality means
nothing else but to determine where an engine object or entity is currently stored, and how this

affects the execution of commands. Likewise, it is important to know how and where global
variables are stored. We will examine these things in detail below.

Locality and Variables
The locality mostly concerns objects, but other things need consideration too. For example, Arma
differentiates between global and local variables, but the names are a bit misleading. Local variables
are local to a certain scope, namely the scope they are defined in. They are invariably named with a
leading underscore character. The scripting engine immediately forgets them if they go out of scope,
which is a common pitfall if you define them e.g. in the “then” part of an if statement.

What Arma calls global variables are variables that start with something else than an underscore
character. However, and this is very important, global variables are global only to the scope of
scripts running on the machine they were defined on. What this means is that if my script runs on a
client machine and assigns a value to a global variable, that value is only visible on this specific
machine. Even worse, a variable with the same name can have a different value on a different client,
or the server. Arma does NOT automatically distribute variable values around clients and the server.

In this respect, we refer to “clients” as those machines that run a player's game, and “server” as the
machine that hosts the game. On a hosted game, one client will be identical to the server, but on a
dedicated host, this is not the case.

In order to make sure that a variable has the same value on all clients and the server, it needs to be

declared as public using the publicVariable command. In a script this looks something like this:

/* Define a variable to be used on all attached clients */
FHQ_DifficultyLevel = 1;
publicVariable “FHQ_DifficultyLevel”;

The above makes sure the variable has the same value on all clients and the server, but this works
on a first-come-first-served basis, meaning that running the same command on more than one client
with different values might have different outcomes.

It is also worth nothing that although the variable in the above example was declared public, this
only applies to the current value of the variable. This does not mean that future changes of the
variable will be automatically transmitted as well. Every time you change the variable and want that

change to be visible outside of the current client or server, you need to run the publicVariable

command again.

This type of locality behaviour also affects variables set with the setVariable command. This

command is usually used on objects or namespace objects, and the default behavior is the same as
global variables – content or changes is not propagated to other machines. In order to make this
type of variable public in the same sense as above, you need to use the three-element array version:

/* Make an object's variable public */
MyChopper setVariable [“Callsign”, “Zulu Victor Niner”, true];

The highlighted parameter is a boolean that will determine whether this setVariable command is

propagated or not. Obviously, setting it to true will propagate the value, while omitting the

parameter or setting it to false will not.

What you should have gotten out of this section:
1. “global” variables are local to the machine they are defined on. Their value or changes in

their value are not automatically known on other machines.

2. To make a variable really global, you need to use the publicVariable command every

time you changed a value.

3. These rules apply to object specific variables as well, you need to use the three element

array version of setVariable to ensure distribution over the network.

Locality and Objects
Unlike variables, objects always reside on exactly one machine. This can be the server or any
connected client, and it can and will change with time (with certain exceptions). The exact rules of
locality are outlined here, but as mission makers it isn't really all that relevant to us. What is
important, though, is to know when and where effects are global or local, and what type of
arguments a scripting command can take. To test whether an object is local or not, the command

local object can be used which will either return true if the object is local to the machine the

command is running on, or false if it isn't. This is a very important command.

For the sake of clarity, when we say object here we refer to a vehicle, a unit, or anything that is of

type Object. A common predefined object variable is player, which is a reference to the object

that represents the player on the client the script is running on1. On a client, the scripting command

local player will always return true, and consequently, this means that the player variable

references a different object on each client (and no object on the dedicated server).

If you look at the BIKI entries for some commands (most notably, those that refer to objects), you
will notice some two of four different icons that can appear on top. These are:

1. “AL” (argument local): A command that has this icon needs to be run on the machine that
the object it operates on is local. That means that if the object is on a different machine, the

statement will have either no effect, or a different, undefined effect. setVariable is an

example of a command with a local argument; the statement will have no effect if the
argument is on a different machine.

2. “AG” (argument global): A command with this icon can run on any machine, the argument
object does not need to be local (but can be) to the machine running on. An example of this

is the local command, which can operate on any object.

AG is mutually exclusive to AL

3. “EL” (effect local): A command with local effect will have exactly that – a local effect. The
result of this command will be local to the machine it runs on, and its effects will not be

visible globally, on different machines. Again, the setVariable command is an example

1 Note that there is no player object on a dedicated server, only on clients (or a hosted server), a common pitfall that
is responsible for a lot of errors.

https://community.bistudio.com/wiki/Locality_in_Multiplayer

of a command with local effect; unless instructed to do so by the three-element array

version, setVariable's effect will only be visible locally, and not propagate over the

network.

4. “EG” (effect global): A command with global effect will have a visible, noticeable effect on

all connected machines (clients and server alike). The setDamage command is one such

example, even executed on a single machine, setting an objects damage to 1 will kill it and it
will appear dead/destroyed on all attached machines.
EG is mutually exclusive to EL.

It is of utmost importance to know what argument type and effect type a command has. Any
mistake here has the potential of breaking your mission, so make sure to look up the effects.

Object locality will dictate what kind of scripting commands you can run on an object. If local

object returns false, then you will not be able to use a command of the “AL” category. This

category of commands must run on the same machine. On the other hand, a command of the “AG”
category can disregard the locality of the object, since it will be able to operate on it (however, the
effect can still be local only).

A command with local effect cannot be easily made global. In the case of the setVariable

command, there is an easy way to distribute the effect to other machines, but that is not the case for

all commands. As an example the addWeaponCargo command, while being able to operate on an

object that is stored anywhere, will only add the weapon cargo to the object on the specific machine
that the command runs on. So, for example, if you run the command on an ammo box on a
dedicated server, the extra weapons you put in are not visible to the clients, and it will appear as a
stock ammo box.

Luckily, the addWeaponCargoGlobal command is a version of the command that will do just

that, so in this case it is easy to work around this limitation. Other commands might not be so easy

to fix, but we will talk about that later in the discussion of the BIS_fnc_MP function.

Common Pitfalls with Global Effect commands

It is very important to observe that the global effect takes place every time the command is

executed. Take the following example of an init.sqf script from a fictuous mission. We will

assume there is a car in the mission called “FHQ_playerCar” placed on the map, and you want to
fill it up with four MX rifles and 10 magazines.

/* init.sqf */
FHQ_playerCar addWeaponCargoGlobal [“arifle_MX_F”,4];
FHQ_playerCar addMagazineCargoGlobal [“30Rnd_65x39_caseless_mag”, 10];

If you paid attention, you will immediately see what is wrong here. init.sqf is run at startup on

all clients and the server. The two lines of code supposedly add 4 MX rifles and 10 magazines. But
since the effect is global, something else entirely will happen.

• On a hosted game with only a single player, or single player for the matter, the effect will be
as intended – there will be 4 rifles and 10 magazines.

• On a dedicated server with a single player, there will be 8 rifles and 20 magazines. Since the
script runs on all machines, and the effect of the command is global,

addWeaponCargoGlobal will add four rifles on all machines. In fact, if there are more

players than one, the effect will stack.

This is just a very constructed example, but it shows the problem with global effects: Duplication.
Not even Bohemia Interactive's own code is always bulletproof against that. For example, the
Supports module that airdrops ammo will duplicate by the number of players in a mission on
dedicated servers.

Similar effects can occur when using triggers. We will talk about trigger locality in more detail
below.

Common Pitfalls with Local Effect commands

Obviously, one of the most serious issues that can occur with local effect commands is that they

only have effect on a single machine. createSimpleTask is an example of a command that takes

a global argument but only has local effect. While most briefings are added during init.sqf and

therefore globally visible, creating tasks dynamically during the mission will fail to show the tasks
for everyone unless the command is properly executed on all attached clients.

Likewise, certain commands that seem to be working correctly when you test the mission in single
player or on a hosted environment will fail to work on dedicated or with more players. For instance,

if you want to override an object's material, you would use the setObjectMaterial command.

Typically, you would be tempted to put this into e.g. a vehicle's init field. However, the init field is
run only where the object is local – if it is an empty vehicle, it would only run on the server, if a
player is sitting in it, it would only run on the machine that the driver is using, etc. Since the effect
is local, at most one player would see the effect, and everybody else would not see anything.

What you should have gotten out of this section:
1. Script commands that operate on objects may require a local argument. In this case, supplying

a non-local argument might not have any effect at all.
2. Script commands might have local or global effect. Local effects are only visible on the

machine running the script, while global effects take place everywhere.
3. Objects in Arma have one and exactly one machine were they are stored (are “local”). The

owner can be any client or the server, which might be the same on a hosted server.
4. Common problems include duplication of effects (when a global effect command is run on

multiple machines) and effects only visible on at most one machine (when a local effect
command is only run on a specific machine).

5. The problems mentioned in the above point might or might not be visible on a hosted test
server if you only connect with a single client.

Locality of Triggers
Triggers created either in the editor or using the createTrigger command are always global

objects. This means they should only be created on the server, and not necessarily on the client
(although I am not sure about radio triggers, since you might want to give only one side a radio

trigger and not the other). Running local triggername on a client that is not the server (i.e. a

joined player or any client on a dedicated server) will return false for triggers that have been

placed in the editor. In this respect, triggers are to be treated like any object in terms of locality, so

that e.g. the command setTriggerActivation should run on the server since its effect is local.

When we speak about locality of triggers, we are more concerned with how they execute their
statements or create their effects. Unfortunately, this isn't as clear cut as it seems.

A radio trigger (for example Radio Alpha) will very likely run its statements on every client and the
server when triggered. That means that the scripting commands in the activation field will run for at
least the number of players connected, potentially one more for the server. This means that the
duplication effect from global effect commands discussed in the previous chapter is very obviously
a danger here.

However, as a general rule, trigger activation statements (and therefore, triggering the trigger) only
run on the machine where the trigger condition evaluates to true. Let me repeat this again: The
trigger only fires on those machines were the condition evaluates to true. This very important fact
can have unforeseeable side effects. A common example is the “Detected By” trigger. It is very
possible that a player is detected on one or more clients and/or the server, but not on others. If you
use such a trigger to end a mission (say, a stealth mission which requires users to stay undetected), it
might end up terminating the mission on some clients but not on others.

Another example are triggers that have a scripted condition. For example, putting !alive player

into the condition of a trigger will only trigger on the clients were players have been killed. While
this effect is obviously desirable, combined with other locality issues it is a very common source of
problems.

Getting a grip on these issues isn't necessarily difficult, but one needs to be aware of it.

What you should have gotten out of this section:
1. Triggers behave like normal objects in terms of locality, but should, as a rule, only be created

on the server.
2. Most trigger conditions are globally valid, but the word “most” is the problem here.
3. Triggers only trigger on machines that satisfy their trigger condition. Most notably, using

scripted trigger condition other than this will be highly dependent on locality and variables.

Practical Tips and Tricks
Armed with the knowledge above, the rest of this guide will try to give advice on how to handle
common situations. This is by no means complete, and some of it might not be the optimal solution,

but so far, it has (mostly) worked for me.

Briefings And Tasks
As mentioned above, a good number of scripting commands related to briefings and tasks are local
effect only. Obviously this is a necessity, since you do not always want all players/groups/sides to
have the same briefing. However, this means that getting a briefing that works reliable will have its
challenges.

Luckily, there is a very easy solution to this issue: Use a task tracker. I am not trying to promote
FHQ Task Tracker here, use whatever you like. FHQ and Shuko's are two example of working task
trackers that will make the creation, both statical and dynamical, of briefings and tasks so much
easier. Both of them are robust and proven to work. Really, there is no reason whatsoever to
reinvent the wheel – use a task tracker for briefings, and save yourself a lot of headaches.

Working With Triggers
As we have seen above, triggers might be tricky to handle correctly, especially if you do not want
them to behave erratically like the Detected By type. There are a couple of things you can do. One
method I had frequently used in the past is Game Logic objects and waypoints. If you synchronize a
trigger to a waypoint, the group associated with the waypoint will move to it but do not continue
until the trigger fires. This can be used to e.g. run a script or commands in the waypoints
completion field. However, I do advice against this method, or rather, I don't use it anymore since I
have found that (at least last time I checked) logic waypoints (AND and OR types) are broken
(AND waypoints behaved like OR waypoints).

What I mostly do myself these days is to use a mission flow FSM. FSM stands for Finite State
Machine, and what it means is a graph of nodes that can either be states or conditions. When a state
is reached, the FSM execution will halt in that state until one of the attached conditions evaluates to
true. For more on FSM's, see the chapter “FSM Crash Course” below.

The major point with triggers is making them reliable and determined, meaning that you want to
make sure that the trigger works and its statements are only executed the right amount of times
(mostly, one time, or one time per client). For this purpose, any method works if it first determines
that the trigger fired on a machine, and then executes the correct statements. Using the above
waypoint method will make the script execution only depend on the game logic (which only exists
once, and always on the server) and therefore will fold one or many firings of the trigger to a single
one which can then continue the processing in a deterministic way – you will be absolutely sure that
the code will only be executed once, so you can use whatever methods to make sure it runs were it
is supposed to run.

Triggers can be used effectively using a condition field containing a variable. For example, to end a
mission and make sure that it runs on all clients, place a trigger in the mission and put the following
in the Trigger Condition:

myVariable

In the On Activation field, place the following:

[“end1”] call BIS_fnc_endMission;

Now, to reliably end the mission, any client or the server can simply run

myVariable = true; publicVariable “myVariable”;

Obviously, you can pick any variable name, in fact, you are encouraged to use a sensible one. You

should also set the variable to false in your init.sqf to make sure it is defined. Triggers like

this are very easy to make and generally work well.

Using BIS_fnc_MP
For most missions, it isn't obvious how to run something on a specific machine in a multiplayer
environment. The standard function set of Bohemia Interactive's function module, however,

contains a function that is tailored to handle this specific issue: BIS_fnc_MP.

The basic premise of the function is to run a piece of code (mostly a function, i.e. a precompiled
variable containing code) on a number of machines. In its simplest form, it takes the arguments and
the name of the function (or a command name) and runs it on all clients and the server:

[“Hello World”, “systemChat”, true] call BIS_fnc_MP;

The first parameter is the argument to the remotely executed command or function. In this case,

since the systemChat command accepts a single string, it is just that. More complex examples will

likely have an array here.

The second parameter is the command or function to run. If it is a function, it must exist as a

variable on the remote machine(s). The systemChat is a command that displays a message in grey

(running systemChat on the server of course doesn't make sense, since the server doesn't have a

display).

The third parameter may vary wildly depending on what you want to do. In this case, it is a boolean,

which indicates that you want to run the command on the server and (since it is true) on all clients.

Were it false, you would only run on the server.

There are other possibilities for this parameter. For example, specifying an object will run the code
only were the object is local and nowhere else. Likewise, you can specify a side or a group to run it
only on clients where the player is on that specific side, or in that specific group.

There are more options to this function, check the Wiki page for more details.

Ending A Mission
Ending a mission needs to be done on all machines, not only one. Missions that adhere to the new
mission presentation guidelines put out by Bohemia Interactive should end the mission by calling

BIS_fnc_endMission, but again, this needs to be called on all machines. This can easily be done

using any of the above methods (BIS_fnc_MP or Triggers), the reason I make specific mention

here is that it needs to be done and is often forgotten.

A FSM Crash Course

What is a FSM

Note: In order to use FSMs, you need the Poseidon Tools installed. You can find more information

https://community.bistudio.com/wiki/Mission_Presentation
https://community.bistudio.com/wiki/BIS_fnc_MP

here. More specifically, you need the program “FSMEdit”.

FSM stands for “Finite State Machine”, and in the traditional sense is a directed graph with nodes
representing states and labelled edges representing transitions from one state to another when
reading an input character. Bohemia's FSMs are a slight bit different, but the concept is the same.
An FSM in Arma is a graph consisting of two basic types of nodes: States and Conditions.

States are like the states in a traditional FSM. They contain some code, and can contain any number
of links to other nodes, but the other nodes must be Conditions. There are three basic State types:
Start state, End state, and User state.

User states are the standard states that are used within the FSM (they are displayed as white boxes
by default). Typically, almost all states in an FSM are user states. There can only be one Start state.
The Start state is like any other user state, but this is where execution of the FSM begins (it is
shown as a red, rounded rectangle by default). Finally, there might be any number of end states, and
they too behave mostly like any other user state, only that once their code is executed, instead of
evaluating the conditions (see below), the execution of the FSM terminates (end states display as an
orange rounded rectangle).

Conditions, on the other hand, are nodes that evaluate a condition (hence the name). If the condition
evaluates to true, then the FSM's state changes to the one (and exactly one) node that the Condition
is linked to. Two basic conditions exist that are interesting for our purposes. A Condition is what is
normally used, it is displayed as a yellow diamond shape (like the conditions in flow charts). A
condition has a code field that is expected to yield a boolean result. On the other hand, a True
Condition (represented by a greenish diamond) is a Condition that always returns true. It is
somewhat redundant since it could be simulated by adding a “true” to a normal condition's code
field.

FSM Execution

Execution starts at the Start node. Every time a state node is entered, it first executes its “InitCode”
code, which in our case will be a simple SQF script snippet. This works like calling a code piece in
a normal SQF script.

Once the code has run, the FSM interpreter goes through all linked conditions of the current state,
evaluating their Condition field. The first one to yield a true result is taken, and the FSM transitions
to the state that the Condition links to. This process is repeated until an end state is reached or hell
freezes over (well, actually, the mission ends/the server terminates, but for all intent and purpose,
the FSM will run forever unless terminated).

The order that the conditions are evaluated is largely first-come-first-served. However, each of the
Condition nodes can have a priority (which defaults to zero). The higher the priority, the earlier the
condition is considered.

If the new state is an End state, the code of that state is executed normally, but execution of the
FSM terminates.

It is important to note that if no condition evaluates to true, the FSM stays in the current state but
the code is not executed again. Code is only executed one the state is reached, either for the first
time or after the FSM performed a loop and execution returned to a specific state. On the other

https://community.bistudio.com/wiki/Poseidon_Tools

hand, the code of Condition is executed every time the condition is considered.

Convoy Ambush Example

Let's start to create a small FSM for a fictitious mission. Let's assume we have a convoy consisting
of two vehicles (named eastVehicle1 and eastVehicle2 in the editor). We want to have the players
ambush and destroy the convoy, then fall back to an LZ were they will be picked up by a helicopter
(named westHelo1) and flown out.

If you are a seasoned mission maker, you can just read the following to get what we're talking
about. If you are unsure, I recommend you follow along with this. I will require a basic knowledge
of mission making, but I guess most of it is pretty obvious.

Multiplayer missions are best edited in the MP Editor. Start a hosted MP session and choose “New
Mission” on Stratis. We'll assume our convoy is coming from Mike-26 headed for Rogain, and that
we want to ambush them in the small forest area around 048044.

Start with the player team. I have chosen to make it a four player mission, with a Recon team
leader, AT specialist, Demo expert and Paramedic. My starting point is just north of the proposed
ambush position, so players have time to move there and set up. Pick a date, weather, and time of
day. I will make it early morning and slightly rainy.

Place a marker on the road, name it “markAmbush” and give it “Ambush Convoy” as the text. You
may want to rotate it so that it points down the road towards the direction that the convoy is coming
from. Likewise, place a marker at 053037 and call it “markPickup” with a text of “Extraction”.

Let's take two T-100 tanks, put them on the road near Mike-26, and call them eastVehicle1 and
eastVehicle2. Place a first waypoint right in front of them and set it to “Safe” and “Column”, then
continue to set waypoints until they arrive at their final destination somewhere near Rogain (you
can put it closer to the ambush point so that failure of the mission will not be drawn out too long,
but give the players enough time to pursue the tanks and engage them with AT if needed).

Now place a trigger near the first waypoint, and set its Condition field to true. Set the timer to
“Countdown” and set Min, Mid and Max all to 60. Synchronize the trigger with the first waypoint.
This will ensure that the convoy waits a minute before departing Mike-26.

We want to know when they arrive there, so that we can fail the mission when this happens. In the
last waypoints On Activation field, enter the following:

ConvoyReachedDesitnation = true; publicVariable “ConvoyReachedDestination”;

This will, when the final waypoint is reached, set a global variable to true. Save the mission, then
create a file init.sqf in the mission folder, and place this in the file:

ConvoyReachedDesitnation = false;
tf_no_auto_long_range_radio = false; // No long range radio required (TFAR)
call compile preprocessFileLineNumbers "fhqtt2.sqf";
call compile preprocessFileLineNumbers "briefing.sqf";

The second line makes sure we do not get long range radios on the team leader if TFAR is loaded;
we don't need it for this mission, and would rather have him have a backpack with extra explosives
(see below). Since this is executed on all machines, there is no need to make it a

publicVariable. The second line initializes the FHQ Task Tracker that we are going to use for

briefings and tasks. Download FHQ Task Tracker from here and copy fhqtt2.sqf into your mission
folder.

Now create a new file briefing.sqf and copy/paste the following code in.

/* Define the briefing */
[

west,
["Mission",

"Ambush the convoy on the <marker
name=""markAmbush"">forest road</marker>"

],
["Execution",

"A convoy of two T-100 tanks is leaving Mike-26 in a few
minutes. Move your team to the road through the forest at <marker
name=""markAmbush"">048044</marker>, prepare an ambush, and make sure that
the tanks never reach Rogain.

After the ambush, fall back to
<marker name=""markPickup"">053037</marker> for extraction by helicopter."

]
] call FHQ_TT_addBriefing;

[
west,

[
"taskAmbush",

 "Proceed to the <marker name=""markAmbush"">forest road</marker>
and set an ambush for the two T-100 tanks coming from Mike-26. Make sure
both tanks are destroyed",

"Ambush Tanks",
"AMBUSH",
getMarkerPos "markAmbush", "assigned"

],
[

"taskExtract",
"Move to <marker name=""markPickup"">053037</marker> for

extraction by helicopter",
"Extraction",
"MOVE",
getMarkerPos "markPickup"

]
] call FHQ_TT_addTasks;

If you test-run the mission now, you will notice that you have a briefing and tasks. You will also
notice that the equipment the explosive specialist carries is a wee bit underpowered for the purpose,
so let's pack him some lunch.

Go to the Explosive Specialist and give him a name (I chose westMan3, since I named the others
westManX accordingly). Then, add the following to the end of the init.sqf:

/* Make sure we have the means to destroy two tanks */
if (isnil {westMan3 getVariable "loadout"} && local westMan3) then {
 removeBackpack westMan3;
 westMan3 addBackpack "B_Carryall_cbr";
 _backpack = unitBackPack westMan3;
 clearMagazineCargoGlobal _backpack;
 clearWeaponCargoGlobal _backpack;
 _backpack addMagazineCargoGlobal ["SatchelCharge_Remote_Mag", 2];
 _backpack addMagazineCargoGlobal ["ATMine_Range_Mag", 1];

http://www.armaholic.com/page.php?id=19774

 _backpack addItemCargoGlobal ["ToolKit", 1];
 westMan3 setVariable ["loadout", 1, true];
};

We do a similar thing to the team leader to ensure we have enough explosive power. His variable
name is westMan1:

if (isnil {westMan1 getVariable "loadout"} && local westMan1) then {
 removeBackpack westMan1;
 westMan1 addBackpack "B_Carryall_cbr";
 _backpack = unitBackPack westMan1;
 clearMagazineCargoGlobal _backpack;
 clearWeaponCargoGlobal _backpack;
 _backpack addMagazineCargoGlobal ["ATMine_Range_Mag", 3];
 westMan1 setVariable ["loadout", 1, true];
};

You might wonder what the term isnil {westMan3 getVariable "loadout"} is good for.

The answer is simple: Without this, every time a player joins in progress into either the team leader

or explosive specialist slots, it would go through the init.sqf and add the loadout again. Since

we don't want that, we need to make sure that we “mark” our units so that init.sqf can determine

that they got their loadout. Obviously, we cannot do that in init.sqf. The easiest way is to check

if the unit has a variable loadout set, and if it doesn't, apply the loadout and set the variable. This

way, next time init.sqf runs for any reason, the loadout variable is not nil, and the script will not

add the backpacks again.

Now, even if you manage to destroy the tanks, nothing happens. It is time to start our FSM.

In order to start from scratch, you need to perform the following steps:

1. Start FSMEdit. You will find it in the Poseidon Tools folder.

2. Set the name of the FSM in the menu FSMAttributes->FSM Name. The name must be the
same as the file base name. In my case, I call my file flow.fsm and the FsmName is set to
“flow”.

3. Set the compile config via menu FSMAttributes->Compile Config. The one you need is
“Data\Packages\Bin\fsmEditor\scriptedFsm.cfg” in the Poseidon Tools installation folder.

You will now see a red rounded rectangle on the screen. Double click it and type “Start”, then click
somewhere to deselect it. This is our starting state. We don't have any code to execute here, but if
there were initializations needed, they could go here. For example, we could have assigned the
loadouts in the start state, too, which would have saved us from doing the loadout variable magic,
but for demonstrational purposes, I did it like this to draw attention to the JIP problem.

Make sure that the “Draw Link” icon (the third in the toolbar) is selected, click and hold the mouse
on the red rectangle, and draw out a line. When you release the button, you will see an arrow
leading away from the red box towards a yellow diamond box. This is a Condition. Although it isn't
needed in our example, we will now add a branch to the FSM that exists if we are not running on
the server. Repeat the Draw Link action from the yellow diamond to get a white box.

Double click the yellow diamond and enter “Exit if Server”. This is a purely descriptive text and

doesn't change the functionality, but it is a good idea to keep your states and conditions labeled. In
the priority field, enter a 1. This means this condition is always checked before the default of 0.

Now in the Condition field, enter !isServer.

What you have just done is define a potential exit for the starting state. The code “!isServer” is
evaluated and will return true if we are on a client. So, on all clients that this FSM is run on, this
exist is taken and will lead into the still white box.

Right-click on the box, and from the popup select “End State”. The box will turn orange and get a
rounded rectangle outline. This means this state is now an end state, and getting here will terminate
the FSM. Enter a description like you would for any other state (like “End the FSM if not on a
server”).

Note that when the “Set mode to Design” button is pressed (the second icon from the top) you can
click and drag the nodes around. Tidy them up to look like this:

Save the FSM in your mission folder under flow.fsm. Make sure to set the type to “Compiled FSM”
in the save dialog.

Our FSM still doesn't do much, and most of all, it isn't even running. Add the following lines at the
end of init.sqf:

if (isServer) then
{

FHQ_missionFSM = [] execFSM "flow.fsm";
publicVariable "FHQ_missionFSM";

};

This will execute the FSM and assign its handle to the FHQ_missionFSM variable. You can pass

parameters to the FSM that are handled just like they are in scripts (as a variable _this), but we

don't need this here.

Now we want to make things interesting. We'll add an exit to the start state that will get us into an
“on-mission” state. While this is strictly speaking not necessary, it introduces for us a new node (the
True Condition).

Make sure “Draw Link” is active, and pull a line down from the red start state. Release the button to
create a yellow diamond, then right click on it and select “True Condition”. The diamond will turn
green. Now pull a link out of that downwards to get a white box (a user state). Label the new state
“On Mission”.

There are two conditions that we need to check when we are “on mission”:

1. The successful destruction of the convoy

2. Whether the convoy got away

The first condition will result in a “task completed” followed by assigning the “exfiltrate” task. The
second condition will end the mission.

Let's start with the second condition, since it is easier to realize. We have set a variable in the final
waypoint of the tanks that gets set to true once the tanks reach their destination. We can simply
check for this. With “Draw Link” selected, pull a line out of the “On Mission” state and get a
Condition state. Label it “Test Failure”. Pull out a link to a new user state, right click it and make it
an end state.

Now, with the previously created “Test Failure” state, just enter ConvoyReachedDesitnation as

the condition. This variable will automatically evaluate to false (if the convoy is on the way or
destroyed), but will be true when it has reached its destination.

For the end state, set the label to “Fail Mission”. For the code, we need to do the following things:

1. Set the tasks to “failed”.

2. End the mission

Copy and paste the following code into the InitCode field of the “Fail Mission” State:

[] spawn {
["taskAmbush", "failed"] call FHQ_TT_setTaskState;

 sleep 1;
["taskExtract", "failed"] call FHQ_TT_setTaskState;
sleep 20;
[["Failed", false], "BIS_fnc_endMission", true] call BIS_fnc_MP;

};

So what is happening here? First of all, we use a spawn statement to run the code. This is because

we use a sleep command, and you cannot use any sort of delay or sleep command in an FSM.

Why the sleep? Well, for one thing, we want the task hints to appear on screen to let the players
know that something happened (which is what the first two lines inside the spawned code do, that's
part of the FHQ task tracker) so we must allow a bit of time for them to appear. Secondly, it's going

to look weird if the mission just fails, so it is a good idea to allow a bit of time.

The final line ends the mission. However, we need to do something else for it. The “Failed” string is
a debriefing entry we want to show after the mission is over. For that, we need to create a
description.ext file.

In your mission folder, create a new text file and call it “description.ext”. Copy and paste the
following code in there:

respawn = "SIDE";

class Header
{

gameType = COOP;
minPlayers = 1;
maxPlayers = 4;

};

author="Alwarren"; // Obviously, use your name here :)
OnLoadName = "Convoy Ambush Example";
OnLoadMission = "Ambush the Convoy";

class CfgDebriefing
{

class Success
{

title = "Mission Successful";
subtitle = "Convoy Destroyed";
description = "Congratulation, men. You have successfully destroyed

the convoy and extracted from the area. Well done.";
picture = "b_inf";
pictureColor[] = {0.0,0.3,0.6,1};

};
class Failed : Success
{

picture = "KIA";
pictureColor[] = {0.6,0.1,0.2,1};
title = "Mission Failed";
subtitle = "";
description = You failed to stop the convoy and extract from the

area.";
};

 };

NOTE: description.ext is only loaded when you open the mission. That means if you have edited it,
you need to leave the editor back to the mission selection screen and start it again, or the changes
will not be visible. Note also that any syntax error in the description.ext will cause the game to
crash to desktop, so make sure you double check those brackets and those semicolons.

If you start the mission now and wait until the convoy has reached its last waypoint, it will cancel
both objectives and fail.

Now we will add the success branch, or more specifically, the condition that checks if both tanks
are immobilized. Going for immobilization is generally better than complete destruction, although
both are valid options.

Again, make sure you are on the Draw Links mode, then pull out a new link from the “On Mission”

state, and immediately pull out another one from the new condition. Label the new condition
“Convoy down?”, and the new user state “Head For Extraction”.

The condition for the convoy destruction is easy. We just need to test whether both vehicles are
unable to move:

!canMove eastVehicle1 && !canMove eastVehicle2

We could also add a canFire to make sure they are neutralized, or we could go all-out and use

alive instead of canMove to ensure their physical destruction. It all depends on what we want to

achieve.

Next, for the “Head for Extraction” state, we want to simply do two things: Set the “destroyed” task
to completed, and assign the extraction task. The code for this cannot be easier, thanks to FHQ Task
Tracker:

["taskAmbush", "succeeded", "taskExtract"] call FHQ_TT_markTaskAndNext;

The function FHQ_TT_markTAskAndNext will set the first task to the given state (succeeded in
this case) then chose the first of the following tasks that is not yet completed as a new task. Since
we only have two, this is a rather easy choice.

With the main task out of the way, we now need to check when to pick up our players. For that, we
need an extra trigger at the site of extraction. Go to the editor, create a trigger, then group it with the
player group. You will notice new options for activation appearing after the trigger is grouped. Set

the Activation to “Whole Group”, and give the trigger a name. I chose FHQ_extractionTrigger.

Make sure that the trigger is placed roughly at the extraction site, and make it big enough (around
80 meters or so) so that the players don't need to be too much on the exact spot (it is kind of an
immersion killer if you are trying to find the right spot to stand on just to trigger the extraction).

With the name of the trigger, we can now augment our FSM to check when the group is in the
trigger. This is simply done by the triggerActivated function. Pull a new link out of the “Head to
Extraction” state, and enter the following in the newly created Condition that you should label
something like “Reached Extraction?”:

triggerActivated FHQ_extractionTrigger

Pull a new link and name the new state “Handle Extraction”. We need to set up a few things in the
editor too. For this example, we place the chopper on the map to keep the scripting effort down,
normally you would probably want to spawn a chopper for the purpose.

First, put down an invisible helipad (Under Empty → Objects (Signs) → Helipad (Invisible)) at the
beach of the extraction site. Place a helicopter you want to use for pickup (like the MH-9)
somewhere on the lower end of the map. Name it “westHelo1”, then place three waypoints to make
it fly in a holding pattern, with the last waypoint being of type “cycle”. In the OnAct field of the

first waypoint, place the statement “westHelo1 setFuel 1;” to make sure our chopper doesn't

run out of fuel if the mission takes too long.

Now, place a new waypoint AFTER the cycle waypoint. Place a trigger next to it, and in the

condition field, replace the “this” with “ChopperGoExtract”. Set the Type to “switch”.

Open up init.sqf and add the line “ChopperGoExtract = false;” somewhere at the top of the

file. This will ensure that the trigger does not fire immediately. Back in the editor, synchronize the
trigger with the new waypoint you created after the Cycle.

So what did you just do? A trigger of type “Switch” can be used to force a group or unit to pick the
specific waypoint that it is synchronized to. In this case, it causes our chopper to break out of the
holding pattern and go for the new waypoint, thus initiating the extraction once the variable

“ChopperGoExtract” is set to true. This is exactly what we are going to do in our FSM in the

“Handle Extraction” user state. Just enter “ChopperGoExtract = true;” in the InitCode field.

We don't need to use publicVariable since the chopper is AI controlled and hence on the server,

and the same applies to placed triggers in the editor. This will make the chopper go for the new
waypoint.

Place another waypoint closer to the extraction, and finally one directly above the extraction
helipad. In this last waypoint, put the Speed to “limited”, and enter the following line in the OnAct
field:

westHelo1 land "GET IN";

Now, place another waypoint close to the helipad with Speed set to “Normal”, and add the
following code:

On the Condition field, enter

{_x in westHelo1} count (playableUnits + switchableUnits) == {alive _x}
count (playableUnits + switchableUnits)

On the OnAct, enter

FHQ_missionFSM setFSMVariable ["_extractComplete", 1];

First, the OnAct introduces yet another method of synchronizing with the FSM. It sets an FSM
variable directly on the FSM to indicate when the extraction is finished. We're going to extend the
FSM in a minue.

The Condition field may look daunting, but it really is quite simple. You will see that it is a test for

equality. On both sides of the operator, we use the count command to count something. The count

command usually counts the elements in an array, but can be extended to accept code that tests each
element of the array on whether it should be counted or not.

The array we count here is (playableUnits + switchableUnits). This is a shortcut to get all

units that can be played, either in singleplayer or multiplayer. In single player, playableUnits is

an empty array with switchableUnits contains all units that the player can switch to/take over.

In multiplayer, this is the other way around. Simply adding the two will always produce the same
array.

The first condition we check is {_x in westHelo1}. This will simply check each element of the

array (i.e. all of our playable units) if they are in the chopper. Likewise, the condition {alive _x}

will count how many of them are still alive. So essentially, we activate this waypoint if and only if

all alive members of the group have boarded the helicopter.

Now, for the final piece. Back in FSMedit, pull out one more condition and label it “Wait for
Extraction”. For the condition code, use

!isnil “_extractComplete”

This means that as soon as the _extractComplete variable has a value, we know that the

extraction is complete. Now pull out a new state from this condition, right click on it, and make it
an end state. Label it “Mission Complete”, and enter the following code in it (which will be very
similar to the one used before):

[] spawn {
["taskExtract", "succeeded"] call FHQ_TT_setTaskState;
sleep 20;
[["Success", true], "BIS_fnc_endMission", true] call BIS_fnc_MP;

};

Save the FSM, and test the mission.

For reference, here's how the full FSM looks for me:

Note that this FSM is pretty simple. For one thing, there is no loops in it. At each state, there are
only exits from the state, and we never get back to one. There are some inherent difficulties with
getting back into a state. Most notably, the condition that we used to exist the state might still be
true. For example, consider we had a task for each of the vehicles and would have to check for each
individually. Our “On Mission” state would now have four instead of two exits:

1. One to test for failure

2. One to test for the destruction of the first vehicle. The condition would lead to another user
state that sets the task to completed, and then leads back to the “On Mission” state via a True
condition

3. One to test for the destruction of the second vehicle, with the same basic setup as the one
under 2.

4. And finally, an exit that would go out of “On Mission” state to indicate we want to go for
the extraction.

There are a number of issues that need to be addressed:

• !canMove eastVehicle1 will remain true once we come back to the “On Mission” state.

That means it will immediately trigger again, and even worse, if this is the first condition, it
will never even check the others since it always finds a true condition once the first vehicle
is destroyed

• Once both vehicles are destroyed, we will want to have the FSM go through the appropriate
branch for that vehicle first before existing the “On Mission” node for the last time. For
example, if we destroyed vehicle 1, and got its “Task Completed”, then destroy vehicle 2,
we want its “Task Completed” before we go out of the loop with the fourth condition.

To solve the first dilemma, I usually associate a variable with a specific task. For example, I would
rewrite the condition of the first vehicle test to

isnil “_taskVehicle1” AND !canMove eastVehicle1

and, in the state that sets the task to completed, I would add a line that assigns a value (in fact, any

value) to _taskVehicle1. This way, the next time we reach the “On Mission” state, the first part

of the condition is false (the variable is no longer nil) so that branch is essentially “dead”. The

same applies to the second vehicle path.

This also immediately opens up an easy solution for the second problem pointed out above. Now
that we associate variables with the specific task, it is very easy to formulate a bulletproof exit from
the “On Misson” state:

!isnil “_taskVehicle1” AND !isnil “_taskVehicle2”

This will be true if and only if we have gone once through both of the vehicle branches. If you want
an exercise, try to implement this.

More things that you can do to improve the mission:

• Place a few enemy patrols on the map. You can use the BIS_fnc_taskPatrol to generate some

random patrol route for your units.

• Place sentries on some strategic locations.

• Advanced: Augment the FSM to call in reinforcements if either of the vehicles is destroyed.
Place a motorized infantry at Rogain and make them wait at a waypoint near Rogain, with a
trigger synchronized to the waypoint using a global variable or whatever other method you
want to use.

The basic version of this mission can be downloaded from our web site:

http://friedenhq.org/Downloads/co04_ambush_example.Stratis.7z

Conclusion
I hope that this guide produced some useful information. The most important aspects of successful
multiplayer mission making is to be aware of locality and what effects they have on the statements
you are executing. The most common issues when running on a dedicated server is that there is no

player object on the server, and any script running that references player might or might not have

an effect, whether desired or not. This guide should have shown how to avoid these problems, and
how to achieve a consistent execution based on global or local events. The FSM as a central entity
for controlling the mission flow is a useful method to ensure single execution even if an event is
triggered multiple times, but again, it must be observed how execution is handled. For example, just

calling BIS_fnc_endMission in the FSM is not enough; it will then ONLY run on the server. If

you are just testing the mission by yourself on a hosted server, that will work because the server and
you are the same entity and therefore there is no such thing as a disjoint context, but as soon as you
run this on a dedicated server, even if you are testing alone, the problem will become immediately
apparent.

It is highly recommended that you set up a dedicated server for testing. I have a separate machine
running Linux that I use as a gateway for my home network which I have set up a dedicated server
on for testing; to the best of my knoweldge, it is possible to run a dedicated server and a client on
the same machine at the same time. Famously, testing only proves the presence of bugs, not their
absence, but it is a good (and so far, pretty much the only method) to ensure your mission runs on a
dedicated server.

The methods presented herein work on single player as well. You can run the test mission we
created in single player as well as multiplayer.

If you have any feedback, please don't hesitate to contact me.

Copyright, Legal Notice and Disclaimer
Much of this document is based on personal experience and collected evidence from the Bohemia
Interactive Forum and the Bohemia Interactive Community Wiki. Although the author has made any
reasonable attempt to achieve accuracy of the content of this document, he will assume no
responsibility for commissions or errors. Usage of this information is at your own risk. The author
makes no representation of completeness or fitness for any particular purpose and shall in no event
be liable for any loss of profit or other damage, including but not limited to special, incidental,

http://friedenhq.org/Downloads/co04_ambush_example.Stratis.7z

consequential or other damages.

All trademarks, service marks, product names, or named features are assumed to be the property of
their respective owners and are only used for reference, without any implied endorsement when
using any of the terms.

© 2014-2015 by Hans-Jörg Frieden. All Rights Reserved.

Contacting the author: I can be reached via E-Mail as Alwarren@ciahome.net or as
Alwarren@friedenhq.org, or on the Bohemia Interactive forum under the username Alwarren.

mailto:Alwarren@friedenhq.org
mailto:Alwarren@ciahome.net

	Locality – The Most Important Thing
	Locality and Variables
	Locality and Objects
	Common Pitfalls with Global Effect commands
	Common Pitfalls with Local Effect commands

	Locality of Triggers

	Practical Tips and Tricks
	Briefings And Tasks
	Working With Triggers
	Using BIS_fnc_MP
	Ending A Mission
	A FSM Crash Course
	What is a FSM
	FSM Execution
	Convoy Ambush Example

	Conclusion
	Copyright, Legal Notice and Disclaimer

